Line 28: | Line 28: | ||
* [[Special_Sessions#ss2| SS2 Kalman Filters in Nonlinear State Estimation]] | * [[Special_Sessions#ss2| SS2 Kalman Filters in Nonlinear State Estimation]] | ||
* [[Special_Sessions#ss3| SS3 Data Fusion Methods for Indoor Localization of People and Objects]] | * [[Special_Sessions#ss3| SS3 Data Fusion Methods for Indoor Localization of People and Objects]] | ||
− | * [[Special_Sessions#ss4| SS4 Multimodal Image Processing and Fusion ]] | + | * [[Special_Sessions#ss4| SS4 Multimodal Image Processing and Fusion]] |
− | * [[Special_Sessions#ss5| SS5 Homotopy Methods in State Estimation ]] | + | * [[Special_Sessions#ss5| SS5 Homotopy Methods in State Estimation]] |
+ | * [[Special_Sessions#ss6| SS6 Data Fusion in Sensor-based Sorting]] | ||
</div> | </div> | ||
|} | |} | ||
Line 114: | Line 115: | ||
| class="MainPageBG" style="width:100%; border:1px solid #bdd6c6; background:#e7f7e7; vertical-align:top; color:#000;" | | | class="MainPageBG" style="width:100%; border:1px solid #bdd6c6; background:#e7f7e7; vertical-align:top; color:#000;" | | ||
{| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;" | {| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;" | ||
− | | style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#d6efd6; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #bdd6c6; text-align:left; color:#000; padding:0.2em 0.4em;">SS4 Multimodal Image Processing and Fusion </h2> | + | | style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#d6efd6; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #bdd6c6; text-align:left; color:#000; padding:0.2em 0.4em;">SS4 Multimodal Image Processing and Fusion</h2> |
|- | |- | ||
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px"> | | style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px"> | ||
Line 132: | Line 133: | ||
| class="MainPageBG" style="width:100%; border:1px solid #f2ea7e; background:#ffffe8; vertical-align:top; color:#000;" | | | class="MainPageBG" style="width:100%; border:1px solid #f2ea7e; background:#ffffe8; vertical-align:top; color:#000;" | | ||
{| id="mp-left" style="width:100%; vertical-align:top; background:#ffffe8;" | {| id="mp-left" style="width:100%; vertical-align:top; background:#ffffe8;" | ||
− | | style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#fff7bd; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #f2ea7e; text-align:left; color:#000; padding:0.2em 0.4em;">SS5 Homotopy Methods in State Estimation </h2> | + | | style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#fff7bd; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #f2ea7e; text-align:left; color:#000; padding:0.2em 0.4em;">SS5 Homotopy Methods in State Estimation</h2> |
|- | |- | ||
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px"> | | style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px"> | ||
Line 140: | Line 141: | ||
'''Organizers:''' [mailto:martin.pander@kit.edu Martin Pander], [mailto:uwe.hanebeck@kit.edu Uwe D. Hanebeck] | '''Organizers:''' [mailto:martin.pander@kit.edu Martin Pander], [mailto:uwe.hanebeck@kit.edu Uwe D. Hanebeck] | ||
+ | |||
+ | |- | ||
+ | |} | ||
+ | | style="border:1px solid transparent;" |<br /> | ||
+ | |- | ||
+ | |||
+ | <!-- MFI 2016 Accepted Special Sessions --> | ||
+ | {| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;" | ||
+ | <div id="ss6"></div> | ||
+ | <!-- SS6 Homotopy Methods in State Estimation --> | ||
+ | | class="MainPageBG" style="width:100%; border:1px solid #f2ea7e; background:#ffffe8; vertical-align:top; color:#000;" | | ||
+ | {| id="mp-left" style="width:100%; vertical-align:top; background:#ffffe8;" | ||
+ | | style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#fff7bd; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #f2ea7e; text-align:left; color:#000; padding:0.2em 0.4em;">SS6 Data Fusion in Sensor-based Sorting</h2> | ||
+ | |- | ||
+ | | style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px"> | ||
+ | '''Description:''' Sensor-based sorting is an established technology for sorting of various products according to quality aspects. Fields of application include food processing, recycling, and industrial mineral processing. Selection of a sensor suitable for material characterization typically depends on the product under inspection as well as the sorting task itself. However, in many cases increased sorting performance is achieved by combining information retrieved from multiple different sensors, for example line-scan and area-scan cameras, near-infrared cameras, X-ray, 3D sensors, or hyperspectral cameras. Hence, sensor data needs to be fused to increase performance by putting information in a temporal and / or spatial context. This applies for systems including several sensors of the same kind as well as heterogeneous combinations. Additionally, sensor-based sorting systems are typically restricted in terms of the time being available to derive a sorting decision. Therefore, real-time capable information fusion methods are required. | ||
+ | |||
+ | '''Organizers:''' [mailto:georg.maier@iosb.fraunhofer.de], [mailto:Robin.Gruna@iosb.fraunhofer.de Robin Gruna] | ||
|- | |- |
Revision as of 10:47, 17 May 2016
|
|
|
|
|
|
|
|