(Created page with "<!-- CALL FOR PAPERS --> {| id="mp-upper" style="width: 80%; margin:4px 0 0 0; background:none; border-spacing: 0px;" <div id="tutorial1"> <!-- CFP Downlo...") |
|||
(9 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- CALL FOR PAPERS --> | <!-- CALL FOR PAPERS --> | ||
− | {| id="mp-upper" style="width: | + | {| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;" |
− | + | ||
<!-- CFP Download --> | <!-- CFP Download --> | ||
| class="MainPageBG" style="width:100%; border:1px solid #bdd6c6; background:#e7f7e7; vertical-align:top; color:#000;" | | | class="MainPageBG" style="width:100%; border:1px solid #bdd6c6; background:#e7f7e7; vertical-align:top; color:#000;" | | ||
Line 14: | Line 13: | ||
| style="border:1px solid transparent;" |<br /> | | style="border:1px solid transparent;" |<br /> | ||
|- | |- | ||
+ | |||
+ | <!-- List of Tutorials of MFI 2016 --> | ||
+ | {| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;" | ||
+ | <!-- List of Special Sessions of MFI 2016 --> | ||
+ | | class="MainPageBG" style="width:100%; border:1px solid #f2ea7e; background:#ffffe8; vertical-align:top; color:#000;" | | ||
+ | {| id="mp-left" style="width:100%; vertical-align:top; background:#ffffe8;" | ||
+ | | style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#fff7bd; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #f2ea7e; text-align:left; color:#000; padding:0.2em 0.4em;">List of Tutorials of MFI 2016</h2> | ||
+ | |- | ||
+ | | style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px"> | ||
+ | * [[Tutorials#tutorial1| T1 Introduction to distributed and event-based state estimation]] | ||
+ | * [[Tutorials#tutorial2| T2 Relatives for the Kalman filter for tracking and fusion]] | ||
+ | * [[Tutorials#tutorial3| T3 Robust Kalman filtering]] | ||
+ | * [[Tutorials#tutorial4| T4 Multisensor fusion in Automated driving]] | ||
+ | * [[Tutorials#tutorial5| T5 Fusion and Bayesian Reasoning with Subjective Logic]] | ||
+ | * [[Tutorials#tutorial6| T6 Passive Surveillance - Advanced Algorithms and Challenging Applications]] | ||
+ | * [[Tutorials#tutorial7| T7 Extended object tracking: Theory and applications]] | ||
+ | * [[Tutorials#tutorial8| T8 Proactive Optimal Control to Infer Information Faster]] | ||
+ | |||
+ | </div> | ||
+ | |} | ||
+ | | style="border:1px solid transparent;" |<br /> | ||
+ | |- | ||
+ | |||
+ | <!-- MFI 2016 Tutorial Time Table --> | ||
+ | {| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;" | ||
+ | <!-- MFI 2016 Tutorial Time Table --> | ||
+ | <div id="timetable"></div> | ||
+ | | class="MainPageBG" style="width:100%; border:1px solid #d6bdde; background:#f7eff7; vertical-align:top; color:#000;" | | ||
+ | {| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;" | ||
+ | | style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:4px; background:#e7deef; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #d6bdde; text-align:left; color:#000; padding:0.2em 0.4em;">Time Table for the Tutorials Day on Monday, September 19, 2016</h2> | ||
+ | |- | ||
+ | | style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px"> | ||
+ | {| class="wikitable" style="text-align:center;background-color:#e7deef;" | ||
+ | ! style="width:8em;text-align:center;background-color:#e7deef;"| | ||
+ | ! style="width:15em;text-align:center;background-color:#e7deef;"|'''Room A''' | ||
+ | ! style="width:15em;text-align:center;background-color:#e7deef;"|'''Room B''' | ||
+ | ! style="width:15em;text-align:center;background-color:#e7deef;"|'''Room C''' | ||
+ | |- | ||
+ | ! style="width:8em;text-align:center;background-color:#e7deef;"|'''Topic''' | ||
+ | ! style="width:15em;text-align:center;background-color:#e7deef;"|'''Tracking & Control''' | ||
+ | ! style="width:15em;text-align:center;background-color:#e7deef;"|'''Sensor MFI''' | ||
+ | ! style="width:15em;text-align:center;background-color:#e7deef;"|'''State Estimation''' | ||
+ | |- | ||
+ | |style="text-align:center;background-color:#e7deef;" | '''Morning'''<br /> | ||
+ | '''08:30–11:30''' | ||
+ | |style="text-align:center;background-color:#f7eff7;" | '''[[Tutorials#tutorial7| T7]]'''<br /> | ||
+ | Extended Object Tracking: Theory and Applications<br /> | ||
+ | ''K. Granström'' | ||
+ | |style="text-align:center;background-color:#f7eff7;" | '''[[Tutorials#tutorial4| T4]]'''<br /> | ||
+ | Multisensor MFI in Automated driving<br /> | ||
+ | ''J. Elfring'' | ||
+ | |style="text-align:center;background-color:#f7eff7;" | '''[[Tutorials#tutorial1| T1]]'''<br /> | ||
+ | Introduction to distributed event-based state estimation<br /> | ||
+ | ''S. Trimpe'' | ||
+ | |||
+ | |- | ||
+ | |style="width:7em;text-align:center;background-color:#e7deef;"| '''11:30–12:30''' | ||
+ | |colspan="9" style="width:15em;text-align:center;background-color:#f7eff7;"| | ||
+ | '''Lunch break'''<br /> | ||
+ | |||
+ | |- | ||
+ | |style="text-align:center;background-color:#e7deef;" | '''Mid Day''' | ||
+ | '''12:30–15:30''' | ||
+ | |style="text-align:center;background-color:#f7eff7;" | '''[[Tutorials#tutorial8| T8A]]'''<br /> | ||
+ | Proactive Optimal Control to Infer Information Faster<br /> | ||
+ | ''R. Urniezius'' | ||
+ | |style="text-align:center;background-color:#f7eff7;" | '''[[Tutorials#tutorial5| T5]]'''<br /> | ||
+ | MFI and Bayesian Reasoning with Subjective Logic<br /> | ||
+ | ''A. Josang'' | ||
+ | |style="text-align:center;background-color:#f7eff7;" | '''[[Tutorials#tutorial2| T2]]'''<br /> | ||
+ | Relatives of the Kalman Filter for Tracking and MFI<br /> | ||
+ | ''D. Fränken'' | ||
+ | |||
+ | |- | ||
+ | |style="width:7em;text-align:center;background-color:#e7deef;"| '''15:30–16:00''' | ||
+ | |colspan="9" style="width:15em;text-align:center;background-color:#f7eff7;"| | ||
+ | '''Coffee/tea break'''<br /> | ||
+ | |||
+ | |- | ||
+ | |style="text-align:center;background-color:#e7deef;" | '''Afternoon'''<br /> | ||
+ | '''16:00–19:00''' | ||
+ | |style="text-align:center;background-color:#f7eff7;" | '''[[Tutorials#tutorial8| T8B]]'''<br /> | ||
+ | Proactive Optimal Control to Infer Information Faster<br /> | ||
+ | ''R. Urniezius'' | ||
+ | |style="text-align:center;background-color:#f7eff7;" | '''[[Tutorials#tutorial6| T6]]'''<br /> | ||
+ | Passive Surveillance - Advanced Algorithms and Challenging Applications<br /> | ||
+ | ''W. Koch'' | ||
+ | |style="text-align:center;background-color:#f7eff7;" | '''[[Tutorials#tutorial3| T3]]'''<br /> | ||
+ | Robust Kalman Filtering<br /> | ||
+ | ''F. Pfaff'' | ||
+ | |||
+ | |- | ||
+ | |style="width:7em;text-align:center;background-color:#e7deef;"| '''19:00–21:00''' | ||
+ | |colspan="9" style="width:15em;text-align:center;background-color:#f7eff7;"| | ||
+ | '''Welcome Reception'''<br /> | ||
+ | |} | ||
+ | |||
+ | |- | ||
+ | |} | ||
+ | | style="border:1px solid transparent;" |<br /> | ||
+ | |- | ||
+ | |||
+ | <!-- MFI 2016 Tutorials --> | ||
+ | {| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;" | ||
+ | <div id="tutorial1"> | ||
+ | <!-- T1 Introduction to distributed and event-based state estimation --> | ||
+ | | class="MainPageBG" style="width:100%; border:1px solid #f5946e; background:#fae6de; vertical-align:top; color:#000;" | | ||
+ | {| id="mp-left" style="width:100%; vertical-align:top; background:#fae6de;" | ||
+ | | style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#f9d6c9; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #f5946e; text-align:left; color:#000; padding:0.2em 0.4em;">T1 Introduction to distributed and event-based state estimation</h2> | ||
+ | |- | ||
+ | | style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px"> | ||
+ | '''Presenter:''' [mailto:strimpe@tuebingen.mpg.de Sebastian Trimpe]<br /> | ||
+ | '''Length:''' 3 hours<br /> | ||
+ | '''Brief description:''' This tutorial provides an introduction to event-based estimation (and control), where new measurement samples are not triggered periodically in time but at well-designed critieria on the measurement signal itself or on the current estimation results. In particular, the tutorial discusses key-aspect of event-based system design (triggering criteria, existing algorithms for estimation, distributed architectures) and highlight several successful experimental applications in networked control and robotics.<br /> | ||
+ | [[T1| More Details]] | ||
+ | </div> | ||
+ | |- | ||
+ | |} | ||
+ | | style="border:1px solid transparent;" |<br /> | ||
+ | |- | ||
+ | |||
+ | <!-- MFI 2016 Tutorials --> | ||
+ | {| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;" | ||
+ | <div id="tutorial2"></div> | ||
+ | <!-- T2 Relatives for the Kalman filter for tracking and fusion --> | ||
+ | | class="MainPageBG" style="width:100%; border:1px solid #a3babf; background:#f5fdff; vertical-align:top; color:#000;" | | ||
+ | {| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;" | ||
+ | |||
+ | | style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#ceecf2; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #a3babf; text-align:left; color:#000; padding:0.2em 0.4em;">T2 Relatives for the Kalman filter for tracking and fusion</h2> | ||
+ | |- | ||
+ | | style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px"> | ||
+ | '''Presenter:''' [mailto:dietrich.fraenken@airbus.com Dietrich Fränken]<br /> | ||
+ | '''Length:''' 3 hours<br /> | ||
+ | '''Brief description:''' This tutorial gives attendees an overview of Kalman-filter-like estimators for state estimation and fusion while taking a system design point of view. An important aspects of the tutorial are how to approach the options to select between the difference estimators, what will be the resulting effort to put in with respect to both implementation and brain power and what possible side-effects can occur when using those filters too naively.<br /> | ||
+ | [[T2| More Details]] | ||
+ | </div> | ||
+ | |- | ||
+ | |} | ||
+ | | style="border:1px solid transparent;" |<br /> | ||
+ | |- | ||
+ | |||
+ | <!-- MFI 2016 Tutorials --> | ||
+ | {| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;" | ||
+ | <div id="tutorial3"></div> | ||
+ | <!-- T3 Robust Kalman filtering --> | ||
+ | | class="MainPageBG" style="width:100%; border:1px solid #bdd6c6; background:#e7f7e7; vertical-align:top; color:#000;" | | ||
+ | {| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;" | ||
+ | | style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#d6efd6; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #bdd6c6; text-align:left; color:#000; padding:0.2em 0.4em;">T3 Robust Kalman filtering</h2> | ||
+ | |- | ||
+ | | style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px"> | ||
+ | '''Presenter:''' [mailto:florian.pfaff@kit.edu Florian Pfaff] and [mailto:benjamin.noack@kit.edu Benjamin Noack]<br /> | ||
+ | '''Length:''' 3 hours<br /> | ||
+ | '''Brief description:''' The tutorial covers various Kalman-filter-like estimators when the observed process has high uncertainties and therefore cannot be captured accurately with a linear models and perfectly selected noise distributions. The tutorial focusses on hybrid estimators relying on the combination of stochastic and set-membership approaches. Several solutions will be presented during this tutorial along with new challenges showing the versatility of hybrid estimation.<br /> | ||
+ | [[T3| More Details]] | ||
+ | </div> | ||
+ | |- | ||
+ | |} | ||
+ | | style="border:1px solid transparent;" |<br /> | ||
+ | |- | ||
+ | |||
+ | <!-- MFI 2016 Tutorials --> | ||
+ | {| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;" | ||
+ | <div id="tutorial4"></div> | ||
+ | <!-- T4 Multisensor fusion in Automated driving --> | ||
+ | | class="MainPageBG" style="width:100%; border:1px solid #f2ea7e; background:#ffffe8; vertical-align:top; color:#000;" | | ||
+ | {| id="mp-left" style="width:100%; vertical-align:top; background:#ffffe8;" | ||
+ | | style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#fff7bd; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #f2ea7e; text-align:left; color:#000; padding:0.2em 0.4em;">T4 Multisensor fusion in Automated driving</h2> | ||
+ | |- | ||
+ | | style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px"> | ||
+ | '''Presenter:''' [mailto:jos.elfring@tno.nl Jos Elfring]<br /> | ||
+ | '''Length:''' 3 hours<br /> | ||
+ | '''Brief description:''' This tutorial explains the domain of (cooperative) automated driving from a multisensor fusion perspective. Topics that will be discussed are, among others, Bayesian filtering and track-to-track fusion algorithms in automated driving, domain specific multisensor fusion requirements and prediction and measurement models. Both theoretical considerations and practical constraints for applying multisensor fusion in (cooperative) automated driving will be discussed.<br /> | ||
+ | [[T4| More Details]] | ||
+ | </div> | ||
+ | |- | ||
+ | |} | ||
+ | | style="border:1px solid transparent;" |<br /> | ||
+ | |- | ||
+ | |||
+ | <!-- MFI 2016 Tutorials --> | ||
+ | {| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;" | ||
+ | <div id="tutorial5"></div> | ||
+ | <!-- T5 Fusion and Bayesian Reasoning with Subjective Logic --> | ||
+ | | class="MainPageBG" style="width:100%; border:1px solid #d6bdde; background:#f7eff7; vertical-align:top; color:#000;" | | ||
+ | {| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;" | ||
+ | | style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:4px; background:#e7deef; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #d6bdde; text-align:left; color:#000; padding:0.2em 0.4em;">T5 Fusion and Bayesian Reasoning with Subjective Logic</h2> | ||
+ | |- | ||
+ | | style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px"> | ||
+ | '''Presenter:''' [mailto:josang@ifi.uio.no Audun Jøsang]<br /> | ||
+ | '''Length:''' 3 hours<br /> | ||
+ | '''Brief description:''' This tutorial gives attendees an introduction to subjective logic and how it applies to Bayesian network modelling and information fusion. Specific elements of the tutorial are (1) Representation and interpretation of subjective opinions, (2) Algebraic operators of subjective logic, and (3) Applications of subjective logic like Bayesian network modelling and analysis.<br /> | ||
+ | [[T5| More Details]] | ||
+ | </div> | ||
+ | |- | ||
+ | |} | ||
+ | | style="border:1px solid transparent;" |<br /> | ||
+ | |- | ||
+ | |||
+ | <!-- MFI 2016 Tutorials --> | ||
+ | {| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;" | ||
+ | <div id="tutorial6"> | ||
+ | <!-- T6 Passive Surveillance - Advanced Algorithms and Challenging Applications --> | ||
+ | | class="MainPageBG" style="width:100%; border:1px solid #f5946e; background:#fae6de; vertical-align:top; color:#000;" | | ||
+ | {| id="mp-left" style="width:100%; vertical-align:top; background:#fae6de;" | ||
+ | | style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#f9d6c9; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #f5946e; text-align:left; color:#000; padding:0.2em 0.4em;">T6 Passive Surveillance - Advanced Algorithms and Challenging Applications</h2> | ||
+ | |- | ||
+ | | style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px"> | ||
+ | '''Presenter:''' [mailto:W.Koch@ieee.org Wolfgang Koch]<br /> | ||
+ | '''Length:''' 3 hours<br /> | ||
+ | '''Brief description:''' The tutorial covers partly material of the recently published book of the presenter (Tracking and Data Fusion, Springer 2014) and thus provides a guided introduction to deeper reading with a particular focus on passive surveillance. Starting point is the well-known JDL model of sensor data and information fusion that provides general orientation within the world of fusion methodologies and its various applications, covering a dynamically evolving field of ever increasing relevance. Using the JDL model as a guiding principle, the tutorial introduces into advanced fusion technologies based on practical examples taken from real world applications.<br /> | ||
+ | [[T6| More Details]] | ||
+ | </div> | ||
+ | |- | ||
+ | |} | ||
+ | | style="border:1px solid transparent;" |<br /> | ||
+ | |- | ||
+ | |||
+ | <!-- MFI 2016 Tutorials --> | ||
+ | {| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;" | ||
+ | <div id="tutorial7"></div> | ||
+ | <!-- T7 Extended object tracking: Theory and applications --> | ||
+ | | class="MainPageBG" style="width:100%; border:1px solid #a3babf; background:#f5fdff; vertical-align:top; color:#000;" | | ||
+ | {| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;" | ||
+ | |||
+ | | style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#ceecf2; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #a3babf; text-align:left; color:#000; padding:0.2em 0.4em;">T7 Extended object tracking: Theory and applications</h2> | ||
+ | |- | ||
+ | | style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px"> | ||
+ | '''Presenter:''' [mailto:karl.granstrom@chalmers.se Karl Granström], [mailto:stephan.reuter@uni-ulm.de Stephan Reuter], and [mailto:marcus.baum@cs.uni-goettingen.de Marcus Baum]<br /> | ||
+ | '''Length:''' 3 hours<br /> | ||
+ | '''Brief description:''' The tutorial will introduce the topic of extended object tracking, i.e., object tracking using modern high resolution sensors that give multiple detections per object. State of the art theory will be introduced, and relevant real-world applications will be shown. The theory is presented in several tracking examples with different object types (e.g., pedestrians, bicyclists and cars) and different sensor systems (e.g., Lidar, radar and camera).<br /> | ||
+ | [[T7| More Details]] | ||
+ | </div> | ||
+ | |- | ||
+ | |} | ||
+ | | style="border:1px solid transparent;" |<br /> | ||
+ | |- | ||
+ | |||
+ | <!-- MFI 2016 Tutorials --> | ||
+ | {| id="mp-upper" style="width: 100%; margin:4px 0 0 0; background:none; border-spacing: 0px;" | ||
+ | <div id="tutorial8"></div> | ||
+ | <!-- T8 Proactive Optimal Control to Infer Information Faster --> | ||
+ | | class="MainPageBG" style="width:100%; border:1px solid #bdd6c6; background:#e7f7e7; vertical-align:top; color:#000;" | | ||
+ | {| id="mp-left" style="width:100%; vertical-align:top; background:#e7f7e76;" | ||
+ | | style="padding:2px;" | <h2 id="mp-tfa-h2" style="margin:3px; background:#d6efd6; font-family:inherit; font-size:120%; font-weight:bold; border:1px solid #bdd6c6; text-align:left; color:#000; padding:0.2em 0.4em;">T8 Proactive Optimal Control to Infer Information Faster</h2> | ||
+ | |- | ||
+ | | style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px"> | ||
+ | '''Presenter:''' Renaldas Urniezius<br /> | ||
+ | '''Length:''' 6 hours<br /> | ||
+ | '''Brief description:''' Assume that we a have a robot and we know what force is applied to the mass center of the robot. Our inputs are the velocity of the robot and the known control force signal. We know that transient signals can tell us about the mass and friction coefficient based on boundary conditions of Newton’s second law. Putting it simpler, the start of the any transient process after switching on a control force tells us what the inertia of the robot is and the end time series provide information about steady state, which explains us, what the friction coefficient is. However, how to incorporate both start and end time series in a single inference step when mass and friction are changing in time? This tutorial answers this question.<br /> | ||
+ | [[T8| More Details]] | ||
+ | </div> | ||
+ | |- | ||
+ | |} | ||
+ | | style="border:1px solid transparent;" |<br /> | ||
+ | |- | ||
+ | |||
+ | {{Organisation}} | ||
__NOTOC____NOEDITSECTION__ | __NOTOC____NOEDITSECTION__ |
Latest revision as of 13:35, 6 September 2016
|
|
|
|
|
|
|
|
|
|