(One intermediate revision by one other user not shown) | |||
Line 57: | Line 57: | ||
|- | |- | ||
|style="text-align:center;background-color:#e7deef;" | '''Morning'''<br /> | |style="text-align:center;background-color:#e7deef;" | '''Morning'''<br /> | ||
− | '''08: | + | '''08:30–11:30''' |
|style="text-align:center;background-color:#f7eff7;" | '''[[Tutorials#tutorial7| T7]]'''<br /> | |style="text-align:center;background-color:#f7eff7;" | '''[[Tutorials#tutorial7| T7]]'''<br /> | ||
Extended Object Tracking: Theory and Applications<br /> | Extended Object Tracking: Theory and Applications<br /> | ||
Line 69: | Line 69: | ||
|- | |- | ||
− | |style="width:7em;text-align:center;background-color:#e7deef;"| '''11: | + | |style="width:7em;text-align:center;background-color:#e7deef;"| '''11:30–12:30''' |
|colspan="9" style="width:15em;text-align:center;background-color:#f7eff7;"| | |colspan="9" style="width:15em;text-align:center;background-color:#f7eff7;"| | ||
'''Lunch break'''<br /> | '''Lunch break'''<br /> | ||
Line 75: | Line 75: | ||
|- | |- | ||
|style="text-align:center;background-color:#e7deef;" | '''Mid Day''' | |style="text-align:center;background-color:#e7deef;" | '''Mid Day''' | ||
− | ''' | + | '''12:30–15:30''' |
|style="text-align:center;background-color:#f7eff7;" | '''[[Tutorials#tutorial8| T8A]]'''<br /> | |style="text-align:center;background-color:#f7eff7;" | '''[[Tutorials#tutorial8| T8A]]'''<br /> | ||
Proactive Optimal Control to Infer Information Faster<br /> | Proactive Optimal Control to Infer Information Faster<br /> | ||
Line 87: | Line 87: | ||
|- | |- | ||
− | |style="width:7em;text-align:center;background-color:#e7deef;"| ''' | + | |style="width:7em;text-align:center;background-color:#e7deef;"| '''15:30–16:00''' |
|colspan="9" style="width:15em;text-align:center;background-color:#f7eff7;"| | |colspan="9" style="width:15em;text-align:center;background-color:#f7eff7;"| | ||
'''Coffee/tea break'''<br /> | '''Coffee/tea break'''<br /> | ||
Line 93: | Line 93: | ||
|- | |- | ||
|style="text-align:center;background-color:#e7deef;" | '''Afternoon'''<br /> | |style="text-align:center;background-color:#e7deef;" | '''Afternoon'''<br /> | ||
− | ''' | + | '''16:00–19:00''' |
|style="text-align:center;background-color:#f7eff7;" | '''[[Tutorials#tutorial8| T8B]]'''<br /> | |style="text-align:center;background-color:#f7eff7;" | '''[[Tutorials#tutorial8| T8B]]'''<br /> | ||
Proactive Optimal Control to Infer Information Faster<br /> | Proactive Optimal Control to Infer Information Faster<br /> | ||
Line 105: | Line 105: | ||
|- | |- | ||
− | |style="width:7em;text-align:center;background-color:#e7deef;"| ''' | + | |style="width:7em;text-align:center;background-color:#e7deef;"| '''19:00–21:00''' |
|colspan="9" style="width:15em;text-align:center;background-color:#f7eff7;"| | |colspan="9" style="width:15em;text-align:center;background-color:#f7eff7;"| | ||
'''Welcome Reception'''<br /> | '''Welcome Reception'''<br /> | ||
Line 163: | Line 163: | ||
|- | |- | ||
| style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px"> | | style="color:#000;" | <div id="mp-tfa" style="padding:2px 5px"> | ||
− | '''Presenter:''' [mailto: | + | '''Presenter:''' [mailto:florian.pfaff@kit.edu Florian Pfaff] and [mailto:benjamin.noack@kit.edu Benjamin Noack]<br /> |
'''Length:''' 3 hours<br /> | '''Length:''' 3 hours<br /> | ||
'''Brief description:''' The tutorial covers various Kalman-filter-like estimators when the observed process has high uncertainties and therefore cannot be captured accurately with a linear models and perfectly selected noise distributions. The tutorial focusses on hybrid estimators relying on the combination of stochastic and set-membership approaches. Several solutions will be presented during this tutorial along with new challenges showing the versatility of hybrid estimation.<br /> | '''Brief description:''' The tutorial covers various Kalman-filter-like estimators when the observed process has high uncertainties and therefore cannot be captured accurately with a linear models and perfectly selected noise distributions. The tutorial focusses on hybrid estimators relying on the combination of stochastic and set-membership approaches. Several solutions will be presented during this tutorial along with new challenges showing the versatility of hybrid estimation.<br /> |
Latest revision as of 13:35, 6 September 2016
|
|
|
|
|
|
|
|
|
|